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Herein  is  presented  an  example  which  shows  the  Green's  function  method  described  in  [1] applied  to  a
simple,  three - dimensional,  pedagogical  example.   This  example  could  be  interpreted  as  the  striking  of  a
small  rectangular  volume  or  rectangular  area  inside  a rectangular  parallelepiped  and  picking  up  the
response  at  a  point  location  elsewhere  in  the  parallelepiped.   This  approach  has  been  used  by  this
author  to  calculate  impule  responses  for  rooms.

We start  from  the  solution  for  the  three - dimensional  (3- D) wave  equation  derived  in  [1] and  follow  the
same  format  as  for  the  one- dimensional  example  [3] except  that  we  will  also  adopt  the  volumetric
source  as  in  [4].  The  3- D solution  for  a  volumetric  source  is  (noting  that  c is  the  speed  of  sound  in  the
medium  while  c is  the  height  of  the  parallelepiped) :
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For  a  fixed  reception  point  at  (x,y,z),  an  impulse  response  function  can  be  precomputed  for  a  source
impulse  signal  δ  (t'  ).  
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which  can  be  computed  for  all  n,m,l  if the  input  data  are  known,  and  let
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Now  we  have  the  impulse  response  function  for  this  problem,  namely  the  discrete  sin  transform  of  the

quantity  
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.  In  any  real  computa tion,  the  number  of  frequencies  is  finite  and  f(t) is  periodic.

As described  in  [1], but  adapted  to  this  3- D example,  to  compute  the  resulting  sound  received  at  point
(x, y, z)  over  time  from  a volumetric  source  extending  from  x1 to  x2, y1 to  y2, and  z 1 to  z 2  one  could
compute  the  convolution:
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In  order  to  compute  
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 it  is  first  necessary  to  choose  a cutoff  frequency  so  that  n,  m,  and  l are

finite.
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The  fundamental  frequency  is  given  by:
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Choosing  f1 1 1 = 1 1 0 H z , the  maximum  value  of  n  can  be  specified  by  considering:
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Solving  for  n:
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Solving  the  corresponding  expression  for  mmaxgives:
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Similarly,  for   lmax  :

lm ax =  1
 R 1

    fm ax

1 1 0 
2

R 1
2 R 2

2R 2
2R 1

2  − R 1
2 R 2

2 − R 2
2
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The  coefficients  are  now:
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Normalizing  this  expression  for  n  =  m  =  l =  1, and  once  again  utilizing  R1 and  R2, the  ratios  of  b  to  a
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(of  b  to  a  and  c to  a)  we  can  determine  the  coefficients  
An m l

ω  n m l

and,  by  means  of  the  sin  transform,

solve  the  3- D wave  equation  for  a  rectangular  parallelepiped.
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