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Herein  is  presented  an  example  which  shows  the  Green's  function  method  described  in  [1] applied  to  a
simple,  two- dimensional,  pedagogical  example.   This  example  could  be  interpreted  as  the  striking  of  a
rectangular  area  of  a  rectangularly  shaped  membrane,  for  example  the  drumhead  of  a  rectangular -
shaped  drum,  and  picking  up  the  response  at  a  point  location  elsewhere  on  the  membrane.

We start  from  the  solution  for  the  three - dimensional  (3- D) wave  equation  derived  in  [1] and  follow  the
same  format  as  for  the  one- dimensional  example  [3] except  that  we  will  also  adopt  the  volumetric
source  as  in  [4].  The  3- D solution  for  a  volumetric  source  is:
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Modifying  it  for  the  case  of  2- D:
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For  a  fixed  reception  point  at  (x,y), an  impulse  response  function  can  be  precomputed  for  a  source
impulse  signal  δ  (t'  ).  

Let
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which  can  be  computed  for  all  n,m  if the  input  data  are  known,  and  let
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Now  we  have  the  impulse  response  function  for  this  problem,  namely  the  discrete  sin  transform  of  the

quantity  
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.  In  any  real  computa tion,  the  number  of  frequencies  is  finite  and  f(t) is  periodic.

As described  in  [1], but  adapted  to  this  2- D example,  to  compute  the  resulting  sound  received  at  point
(x,y) over  time  from  a volumetric  (i.e. area)  source  extending  from  x1 to  x2 and  y1 to  y2, one  could
compute  the  convolution:
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In  order  to  compute  
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 it  is  first  necessary  to  choose  a cutoff  frequency  so  that  n  and  m  are  finite.
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The  fundamental  frequency  is  given  by:
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But  we  also  have:
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Choosing  f1 1 = 1 1 0 H z , the  maximum  value  of  n  can  be  specified  by  considering:
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Solving  the  corresponding  expression  for  mmax  gives:
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The  coefficients  are  now:
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Normalizing  this  expression  for  n  =  m  =  1, and  once  again  utilizing  R, the  ratio  of  b  to  a:
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and  if also  we  specify  the  normalized  pickup  locations  x a  a n d  y b   and  the  ratio  R of  b  to  a,  we

can  determine  the  coefficients  
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and,  by  means  of  the  sin  transform,  solve  the  2- D wave  equation

for  a  rectangular  membrane.    The  program  listed  in  the  Appendix  accomplishes  this.
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Appendix

A simple  C++  demons tra tion  program  follows.   Output  is  to  standard  out.   The  sound  of  this  particular
example  resembles  timpani.

// Two-dimensional pedagogical example for demonstrating application of 
//    Green's function formulation.  No windowing or filtering is performed.
//    No FFT's.  (Exercise for intrepid readers.)
//    Rectangular membrane --- Volumetric

// Similar to hammering drumhead at one position, pickup at another

// Maximum frequency for spectra is one-half of sample rate 
//    (e.g. 44.1 ksps -> 22.050 kHz)

// Dirac delta-function source applied at areal segment xpp1 to xpp2
// Pickup at x = (x / length)
// Response convolved with half-sinusoid waveform to model hammering

// Compile: 
//    $ g++ rect_membrane.cc -o rect_membrane

// WARNING: Be sure to REDIRECT OUTPUT: 
//    $ rect_membrane > rect_membrane.out 
// Use sox to convert text output to WAV file:
//    $ sox -t .dat rect_membrane.out rect_membrane.wav

// Be sure to try out different impulse and pickup positions because
//    these significantly change the timbre, just as with a real drum.
//    When creating a drum, try to use slightly different impulse and



//    pickup locations for each note to create more a more realistic sound.

// After generating WAV files, I recommend SPECIMEN for uploading into
//    a soundbank, then you should be able to play your instrument with
//    keyboard or MIDI file.  Although pitch-shifting in SPECIMEN will
//    work, I recommend creating individual notes or small groups for
//    more realistic and interesting sounds, varying the hammer and
//    pickup locations slightly.

// REDUCE amplitudes for full instruments.  Suggested values are HIGH.

// Placed in public domain.  No warranties expressed or implied.  
//    By compiling this program, you agree to assume all risks associated
//    with this program and agree to indemnify author for all claims arising
//    from your use or misuse of this program, including derivatives, or 
//    arising from your use or misuse of information contained herein.

#include <iomanip>
#include <iostream>
#include <cmath>

int main(int argc, char * argv[])   // One big, bad main...
{

// Get inputs:

   int i_sample_rate = 44100;
   std::cerr << "Sample rate (integer, suggest 48000 or 44100): ";
   std::cin >> i_sample_rate;
   
   double freq = 110.0;
   std::cerr << "Frequency (Hz, double, suggest ~110 for A): ";
   std::cin >> freq;
   double freq_max = double(i_sample_rate)/2.0;

   double R=3.141592653589793;
   std::cerr << "Ratio of dimensions b to a (double, positive, suggest irrational "
      << std::endl <<  "   such as pi = 3.141592653589793 : ";
   std::cin >> R;

   int N = (int)(rint((1.0/R) * sqrt(
      (freq_max / freq)*(freq_max / freq) * (R*R + 1.0) - 1.0
   )));   // close enough...
   int M = (int)(sqrt(
      (freq_max / freq)*(freq_max / freq) * (R*R + 1.0) - R*R
   )));   // close enough...
   int Nmax = 0, Mmax = 0;
   
   int T = 1;
   std::cerr << "Length (seconds, integer, suggest 1): ";
   std::cin >> T;
   T = (int)(rint(2 * T * freq_max));
   
   
   double x = 0.2;
   std::cerr << "Pickup position (double, 0.0 < x < 1.0, suggest 0.1 to 0.2): ";
   std::cin >> x;
   double xpp1 = 0.20;
   std::cerr 
      << "Impulse left position (double, 0.0 < xpp1 < 1.0, suggest 0.20): ";
   std::cin >> xpp1;
   double xpp2 = 0.25;
   std::cerr 
      << "Impulse right position (double, 0.0 < xpp2 < 1.0, suggest 0.25): ";
   std::cin >> xpp2;
   if (fabs(xpp1 - xpp2) < 1e-12)   {
      std::cerr << "ERROR: xpp1 and xpp2 must be at least 1e-12 apart!"
                << std::endl;
      exit(0);



   }
   
   double y = 0.2;
   std::cerr << "Pickup position (double, 0.0 < y < 1.0, suggest 0.1 to 0.2): ";
   std::cin >> y;
   double ypp1 = 0.20;
   std::cerr 
      << "Impulse left position (double, 0.0 < ypp1 < 1.0, suggest 0.20): ";
   std::cin >> ypp1;
   double ypp2 = 0.25;
   std::cerr 
      << "Impulse right position (double, 0.0 < ypp2 < 1.0, suggest 0.25): ";
   std::cin >> ypp2;
   if (fabs(ypp1 - ypp2) < 1e-12)   {
      std::cerr << "ERROR: ypp1 and ypp2 must be at least 1e-12 apart!"
                << std::endl;
      exit(0);
   }
   
   double Amplitude = 4.5;
   std::cerr << "Amplitude (double, suggest 90.0): ";
   std::cin >> Amplitude;
   Amplitude = Amplitude * freq;

   int resolution = 16;   // Accuracy is actually double-precision, normalized
   double normalization = pow(2.0, double(resolution));

   double pi = 3.141592653589793;
   double * * coeff = new double*[N+1];
   for (int i=0; i<N+1; i++)   {
      coeff[i] = new double[M+1];
   }

   double * f = new double[T+1];

// Sinusoid parameters:

   double sin_freq = 120.0;
   const double sin_amplitude = 1.0;
   double sample_rate = double(i_sample_rate);
   int sin_N = int(rint(sample_rate / sin_freq));
   double * sinusoid = new double[T+1];
   double * convolved = new double[T+1];

// A_n_m/omega_n_m:

   double cos_sin_n = 0.0;
   for (int n=1; n<=N; n++)   {
      Mmax = (int)(rint(sqrt(
         (freq_max / freq)*(freq_max / freq) * (R*R + 1.0) - double(n*n)*(R*R)
      )));
      cos_sin_n = sqrt(R*R + 1.0) * 
         (cos(double(n) * pi * xpp1) - cos(double(n) * pi * xpp2)) *

 sin(double(n) * pi * x);
      for (int m=1; m<=M; m++)   {
         Nmax = (int)(rint((1.0/R) * sqrt(

    (freq_max / freq)*(freq_max / freq) * (R*R + 1.0) - double(m*m)
 )));
 if (n < Nmax && m < Mmax)   {

            coeff[n][m] = (cos_sin_n/(double(n*m) * sqrt(R*R * double(n*n) + double(m*m)))) *
       (cos(double(m) * pi * ypp1) - cos(double(m) * pi * ypp2)) *
       sin(double(m) * pi * y);
 }

      }
   }

// f(t) with decay:



   double alpha = log(1e-3) / T;   // t60 for half-period (T)
   for (int t=1; t<=T; t++)   {
      f[t] = 0.0;
      for (int n=1; n<=N; n++)   {
         for (int m=1; m<=M; m++)   {
            f[t] = f[t] + coeff[n][m] * 

       sin((sqrt(double(n*n) * R*R + double(m*m))/sqrt(R*R + 1.0)) * 
          pi * (2 * freq)  *  double(t)/sample_rate);

         }
      }
      // decay:
      f[t] = f[t] * exp(alpha * double(t));
   }

// Create half-sinusoid:

   for (int n=1; n<(sin_N/2); n++)   {
      sinusoid[n] = sin_amplitude * sin(2 * pi * (double(n) / double(sin_N)));
   }
   for (int n=sin_N; n<=T; n++)   {
      sinusoid[n] = 0.0;   // Ensure zero
   }

// Convolve:

   std::cout << "; Sample Rate " << i_sample_rate << std::endl;
   std::cout << std::setw(20) << std::setprecision(20);
   std::cout << "0.0   0.0" << std::endl;
   for (int m=1; m<=T; m++)   {
      convolved[m] = 0;
      for (int t=1; t<=m; t++)   {
         convolved[m] = convolved[m] + (f[t] * sinusoid[m-t+1]);
      }
      std::cout << (double(m) / (sample_rate)) << "   "
         << Amplitude * convolved[m] / normalization << std::endl;
   }

   delete[] coeff;
   delete[] f;
   delete[] sinusoid;
   delete[] convolved;
   
   return(0);
}
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