
Green's Function Method
for Creating Accurate Stereo Sound Images:

Simple Two- Dimensional Example
Rectangular Membrane

David R. Clark, EXE Consulting
P.O. Box 450998 Garland, Texas 75045- 0998

11 August 2004, 07 November 2004

Herein is presented an example which shows the Green's function method described in [1] applied to a
simple, two- dimensional, pedagogical example. This example could be interpreted as the striking of a
rectangular area of a rectangularly shaped membrane, for example the drumhead of a rectangular -
shaped drum, and picking up the response at a point location elsewhere on the membrane.

We start from the solution for the three - dimensional (3- D) wave equation derived in [1] and follow the
same format as for the one- dimensional example [3] except that we will also adopt the volumetric
source as in [4]. The 3- D solution for a volumetric source is:

ψ r , t = c2 8 u
nm l 1

π 3 1
x 2−x 1

 1
y 2−y 1

 1
z2− z1

∑
n m l

' [c o s n π x 1

 a − c o s n π x 2

 a] [c o s m π y 1

 b − c o s m π y 2

 b][c o s l π z1

 c − c o s l π z2

 c]

[s in n π x

 a s in m π y

 b s in l π z

 c]∫t '=−∞

t
s(t')

s in ω nm l τ
ω nm l

d t '

Modifying it for the case of 2- D:

ψ r , t = c2 4 u
 n m 1

π 2 1
x 2−x 1

 1
y 2−y 1

∑
n m

' [c o s n π x 1

 a − c o s n π x 2

 a] [c o s m π y1

 b − c o s m π y 2

 b]

[s in n π x

 a s in m π y

 b]∫t '=−∞

t
s(t')

s in ω n m τ
ω n m

d t '

For a fixed reception point at (x,y), an impulse response function can be precomputed for a source
impulse signal δ (t').

Let

An m = c2 4 u
 n m 1

π 2 1
x 2−x 1

 1
y 2−y 1

[c o s n π x 1

 a − co s n π x 2

 a] [c o s m π y 1

 b − c o s m π y 2

 b] s in n π x

 a s in m π y

 b
which can be computed for all n,m if the input data are known, and let

f t =∫t '=−∞

t

∑
n m

' [An m

s in ω n m τ
ω n m

] δ t ' d t '

= ∑
n m

' An m

ω n m

s in ω n m t

Now we have the impulse response function for this problem, namely the discrete sin transform of the

quantity
An m

ω n m

. In any real computa tion, the number of frequencies is finite and f(t) is periodic.

As described in [1], but adapted to this 2- D example, to compute the resulting sound received at point
(x,y) over time from a volumetric (i.e. area) source extending from x1 to x2 and y1 to y2, one could
compute the convolution:

f t ∗ s t ≡∫−∞

∞
f t ' st - t ' d t ' =∫−∞

∞
f t - t ' st ' d t ' =∫−∞

∞
f τ st ' d t ' = ψ x,y; t

In order to compute
An m

ω n m

 it is first necessary to choose a cutoff frequency so that n and m are finite.

ω n m = n π c

 a
2

 m π c

 b
2

resulting in fn m =
ω n m

2 π
= c

2 n
 a

2

 m
 b

2

.

The fundamental frequency is given by:

f1 1 = c
2 1

 a
2

 1
 b

2

Letting R = b
a

:

f1 1 = cR 21
 2aR

But we also have:

f n 1 = c n 2 R 21
 2aR

 and f 1 m = cR 2 m 2

 2aR

Choosing f1 1 = 1 1 0 H z , the maximum value of n can be specified by considering:

fn 1

f1 1

= n 2 R 21

R 21
=

 fm ax

1 1 0

Solving for n:

nm ax = 1
 R fm ax

1 1 0
2

R 21 − 1

For any given m:

nm ax = 1
 R fm ax

1 1 0
2

R 2 1 − m 2

Solving the corresponding expression for mmax gives:

mm ax = fm ax

1 1 0
2

R 2 1 − R 2

and for any particular n:

mm ax = fm ax

1 1 0
2

R 2 1 − n 2 R 2

The coefficients are now:

An m

ω n m

= 4 u c
 n m 1

π 3 1

 n 2

a2
 m 2

b2 1
x 2−x 1

 1
y 2−y 1

[c o s n π x 1

 a − co s n π x 2

 a] [c o s m π y 1

 b − c o s m π y 2

 b] s in n π x

 a s in m π y

 b
Normalizing this expression for n = m = 1, and once again utilizing R, the ratio of b to a:

An m

ω n m

= R 21

n m R 2 n 2 m 2
[c o s n π x 1

 a − co s n π x 2

 a] [c o s m π y 1

 b − c o s m π y 2

 b] s in n π x

 a s in m π y

 b

If we now specify the area determined by the normalized dimensions x 1

 a , x 2

 a , y 1

 b , a n d y 2

 b
and if also we specify the normalized pickup locations x a a n d y b and the ratio R of b to a, we

can determine the coefficients
An m

ω n m

and, by means of the sin transform, solve the 2- D wave equation

for a rectangular membrane. The program listed in the Appendix accomplishes this.

References and Notes

[1] David R. Clark. Green's function method for creating accurate stereo sound images. EXE Consulting,
P.O. Box 450998, Garland, Texas 75045- 0998, July 2004.

[2] Gabriel Barton. Elements of Green's Functions and Propagation: Potentials, Diffusion, and Waves.
Oxford, 1989. Reprinted 1991.

[3] David R. Clark. Green's function method for creating accurate stereo sound images: Simple one-
dimensional example. EXE Consulting, P.O. Box 450998, Garland, Texas 75045- 0998, July- August
2004.

[4] David R. Clark. Green's function method for creating accurate stereo sound images: Volumetric
Sources. EXE Consulting, P.O. Box 450998, Garland, Texas 75045 - 0998, July 2004.

© Copyright EXE Consulting 2004. All rights reserved.

Appendix

A simple C++ demons tra tion program follows. Output is to standard out. The sound of this particular
example resembles timpani.

// Two-dimensional pedagogical example for demonstrating application of
// Green's function formulation. No windowing or filtering is performed.
// No FFT's. (Exercise for intrepid readers.)
// Rectangular membrane --- Volumetric

// Similar to hammering drumhead at one position, pickup at another

// Maximum frequency for spectra is one-half of sample rate
// (e.g. 44.1 ksps -> 22.050 kHz)

// Dirac delta-function source applied at areal segment xpp1 to xpp2
// Pickup at x = (x / length)
// Response convolved with half-sinusoid waveform to model hammering

// Compile:
// $ g++ rect_membrane.cc -o rect_membrane

// WARNING: Be sure to REDIRECT OUTPUT:
// $ rect_membrane > rect_membrane.out
// Use sox to convert text output to WAV file:
// $ sox -t .dat rect_membrane.out rect_membrane.wav

// Be sure to try out different impulse and pickup positions because
// these significantly change the timbre, just as with a real drum.
// When creating a drum, try to use slightly different impulse and

// pickup locations for each note to create more a more realistic sound.

// After generating WAV files, I recommend SPECIMEN for uploading into
// a soundbank, then you should be able to play your instrument with
// keyboard or MIDI file. Although pitch-shifting in SPECIMEN will
// work, I recommend creating individual notes or small groups for
// more realistic and interesting sounds, varying the hammer and
// pickup locations slightly.

// REDUCE amplitudes for full instruments. Suggested values are HIGH.

// Placed in public domain. No warranties expressed or implied.
// By compiling this program, you agree to assume all risks associated
// with this program and agree to indemnify author for all claims arising
// from your use or misuse of this program, including derivatives, or
// arising from your use or misuse of information contained herein.

#include <iomanip>
#include <iostream>
#include <cmath>

int main(int argc, char * argv[]) // One big, bad main...
{

// Get inputs:

 int i_sample_rate = 44100;
 std::cerr << "Sample rate (integer, suggest 48000 or 44100): ";
 std::cin >> i_sample_rate;

 double freq = 110.0;
 std::cerr << "Frequency (Hz, double, suggest ~110 for A): ";
 std::cin >> freq;
 double freq_max = double(i_sample_rate)/2.0;

 double R=3.141592653589793;
 std::cerr << "Ratio of dimensions b to a (double, positive, suggest irrational "
 << std::endl << " such as pi = 3.141592653589793 : ";
 std::cin >> R;

 int N = (int)(rint((1.0/R) * sqrt(
 (freq_max / freq)*(freq_max / freq) * (R*R + 1.0) - 1.0
))); // close enough...
 int M = (int)(sqrt(
 (freq_max / freq)*(freq_max / freq) * (R*R + 1.0) - R*R
))); // close enough...
 int Nmax = 0, Mmax = 0;

 int T = 1;
 std::cerr << "Length (seconds, integer, suggest 1): ";
 std::cin >> T;
 T = (int)(rint(2 * T * freq_max));

 double x = 0.2;
 std::cerr << "Pickup position (double, 0.0 < x < 1.0, suggest 0.1 to 0.2): ";
 std::cin >> x;
 double xpp1 = 0.20;
 std::cerr
 << "Impulse left position (double, 0.0 < xpp1 < 1.0, suggest 0.20): ";
 std::cin >> xpp1;
 double xpp2 = 0.25;
 std::cerr
 << "Impulse right position (double, 0.0 < xpp2 < 1.0, suggest 0.25): ";
 std::cin >> xpp2;
 if (fabs(xpp1 - xpp2) < 1e-12) {
 std::cerr << "ERROR: xpp1 and xpp2 must be at least 1e-12 apart!"
 << std::endl;
 exit(0);

 }

 double y = 0.2;
 std::cerr << "Pickup position (double, 0.0 < y < 1.0, suggest 0.1 to 0.2): ";
 std::cin >> y;
 double ypp1 = 0.20;
 std::cerr
 << "Impulse left position (double, 0.0 < ypp1 < 1.0, suggest 0.20): ";
 std::cin >> ypp1;
 double ypp2 = 0.25;
 std::cerr
 << "Impulse right position (double, 0.0 < ypp2 < 1.0, suggest 0.25): ";
 std::cin >> ypp2;
 if (fabs(ypp1 - ypp2) < 1e-12) {
 std::cerr << "ERROR: ypp1 and ypp2 must be at least 1e-12 apart!"
 << std::endl;
 exit(0);
 }

 double Amplitude = 4.5;
 std::cerr << "Amplitude (double, suggest 90.0): ";
 std::cin >> Amplitude;
 Amplitude = Amplitude * freq;

 int resolution = 16; // Accuracy is actually double-precision, normalized
 double normalization = pow(2.0, double(resolution));

 double pi = 3.141592653589793;
 double * * coeff = new double*[N+1];
 for (int i=0; i<N+1; i++) {
 coeff[i] = new double[M+1];
 }

 double * f = new double[T+1];

// Sinusoid parameters:

 double sin_freq = 120.0;
 const double sin_amplitude = 1.0;
 double sample_rate = double(i_sample_rate);
 int sin_N = int(rint(sample_rate / sin_freq));
 double * sinusoid = new double[T+1];
 double * convolved = new double[T+1];

// A_n_m/omega_n_m:

 double cos_sin_n = 0.0;
 for (int n=1; n<=N; n++) {
 Mmax = (int)(rint(sqrt(
 (freq_max / freq)*(freq_max / freq) * (R*R + 1.0) - double(n*n)*(R*R)
)));
 cos_sin_n = sqrt(R*R + 1.0) *
 (cos(double(n) * pi * xpp1) - cos(double(n) * pi * xpp2)) *

 sin(double(n) * pi * x);
 for (int m=1; m<=M; m++) {
 Nmax = (int)(rint((1.0/R) * sqrt(

 (freq_max / freq)*(freq_max / freq) * (R*R + 1.0) - double(m*m)
)));
 if (n < Nmax && m < Mmax) {

 coeff[n][m] = (cos_sin_n/(double(n*m) * sqrt(R*R * double(n*n) + double(m*m)))) *
 (cos(double(m) * pi * ypp1) - cos(double(m) * pi * ypp2)) *
 sin(double(m) * pi * y);
 }

 }
 }

// f(t) with decay:

 double alpha = log(1e-3) / T; // t60 for half-period (T)
 for (int t=1; t<=T; t++) {
 f[t] = 0.0;
 for (int n=1; n<=N; n++) {
 for (int m=1; m<=M; m++) {
 f[t] = f[t] + coeff[n][m] *

 sin((sqrt(double(n*n) * R*R + double(m*m))/sqrt(R*R + 1.0)) *
 pi * (2 * freq) * double(t)/sample_rate);

 }
 }
 // decay:
 f[t] = f[t] * exp(alpha * double(t));
 }

// Create half-sinusoid:

 for (int n=1; n<(sin_N/2); n++) {
 sinusoid[n] = sin_amplitude * sin(2 * pi * (double(n) / double(sin_N)));
 }
 for (int n=sin_N; n<=T; n++) {
 sinusoid[n] = 0.0; // Ensure zero
 }

// Convolve:

 std::cout << "; Sample Rate " << i_sample_rate << std::endl;
 std::cout << std::setw(20) << std::setprecision(20);
 std::cout << "0.0 0.0" << std::endl;
 for (int m=1; m<=T; m++) {
 convolved[m] = 0;
 for (int t=1; t<=m; t++) {
 convolved[m] = convolved[m] + (f[t] * sinusoid[m-t+1]);
 }
 std::cout << (double(m) / (sample_rate)) << " "
 << Amplitude * convolved[m] / normalization << std::endl;
 }

 delete[] coeff;
 delete[] f;
 delete[] sinusoid;
 delete[] convolved;

 return(0);
}

/* Reference:

[1] Gabriel Barton. Elements of Green's Functions and Propagation:
 Potentials, Diffusion, and Waves. Oxford, 1989.

 */

