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Herein  is  presented  an  example  which  shows  the  Green's  function  method  described  in  [1] and  [2]
applied  to  a  simple,  plucked - string  model

As shown  in  [2], a  solution  for  the  one- dimensional  (1- D) wave  equation,  for  a  source  at  (x'') and  fixed
reception  point  at  (x):
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 can  be  obtained  by  convolving  f(t) with  s(t'  ) where:
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which  can  be  computed  for  all  n.   If we  choose  to  incorporate  a  decay  into  f(t), it  becomes:
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For  the  case  of  a  plucked  string,  we  can  use  a truncated  sawtooth  function  in  time:

st ' = t '− t1 [ θ t '  -  t1 − θ t '  -  t2]

where  the  actual  amplitude  will  be  comprehended  by  the  constant  u,  and  θ  t is  the  Heaviside  step
function.   The  effect  of  this  particular  s(t'  ) is  to  model  the  pulling  on  a string,  for  example  the
deflection  of  a  guitar  string  by  a pick,  until  it  is  suddenly  released.   The  impulse  response  function  is
for  a  particular  position,  namely  x'',  so  the  pulling  force  is  as  if applied  to  a  single  point  of  the  string.
The  solution  will  then  be:
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As discussed  in  [1], the  upper  limit  of  integration  is  effectively  t  at  any  particular  time  t  rather  than
infinity  for  the  cases  we  will  consider.

If we  simply  substitute  s(t'  ) into  the  original  solution,  we  obtain:  

ψ x ,t =∫−∞

∞
f  τ  st ' d t ' = ∫−∞

∞
e− ατ ∑

n

'  A n

ω n

s in ω n τ  t '− t1 [ θ t '  -  t1 − θ t '  -  t2] d t '

Letting  t1 =  0:
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Because  this  particular  integral  can  be  integrated  relatively  easily,  we  can  straightforwardly  obtain  a
solution  that  does  not  require  computa tion  of  an  impulse  response  function  and  a convolution.
However,  the  disadvantage  of  doing  it  this  way  is  that  it  is  necessary  to  re- solve  the  problem  for  each
new  type  of  source  function  s(t'  ) rather  than  merely  perform  a convolution.   With  an  impulse  response
function,  s(t'  ) could  represent,  for  example,  a  series  of  different  types  of  plucks  which  could  in  turn
represent  all  of  the  notes  played  by  a particular  string  of  an  instrument  during  a performance.

Nevertheless,  results  obtained  from  the  evaluation  of  this  integral  may  be  compared  to  those  obtained
through  computa tion  of  an  impulse  response  function  and  a convolution.   Towards  solving  the  direct
substitution,  changing  the  integration  variable  to  τ  and  interchanging  the  integral  and  summation  gives:
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with  solution:
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Using  the  same  example  as  described  in  [2], the  fundamental  frequency  is  given  by:
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Plotting  versus  time  for  both  the  convolution  and  direct  solutions  where  no  filtering  has  been  applied:

The  convolution  solution  shows  the  last  portion  of  the  motion  of  the  string  at  position  (x) due  to  the
sawtooth  waveform  applied  at  (x'') as  well  as  the  motion  due  to  release,  followed  by  vibration  of  the
string.   The  direct  solution  does  not  show  the  plucking  motions.   In  an  ideal  solution,  the  string  should
remain  at  its  displaced  value  (approximately  - 0.11)  as  it  does  in  the  convolution  solution  rather  than
move  slightly  as  it  does  in  the  direct  solution.
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Appendix

A simple  C++  program  for  creating  a plucked  string  data  file  using  the  convolution  method  is
presented.   Output  is  to  standard  out.   The  sound  resembles  a  guitar  at  440  Hz.

// One-dimensional pedagogical example for demonstrating application of 
//    Green's function formulation.  No windowing or filtering is performed.
//    No FFT's.  (Exercise for intrepid readers.)
//    Plucked String
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// Similar to electric guitar with strumming at one position, pickup at another

// Maximum frequency for spectra is one-half of sample rate 
//    (e.g. 44.1 ksps -> 22.050 kHz)

// Dirac delta-function source at xpp = (x'' / length)
// Pickup at x = (x / length)
// Response convolved with sawtooth waveform to model plucking

// Compile: 
//    $ g++ pluck.cc -o pluck

// WARNING: Be sure to REDIRECT OUTPUT: 
//    $ pluck > pluck.out
// Use sox to convert text output to WAV file:
//    $ sox -t .dat pluck.out pluck.wav

// Be sure to try out different impulse and pickup positions because
//    these significantly change the timbre, just as with a real guitar.
//    When creating a guitar, try to use slightly different impulse and
//    pickup locations for each note to create more a more realistic sound.

// After generating WAV files, I recommend SPECIMEN for uploading into
//    a soundbank, then you should be able to play your instrument with
//    keyboard or MIDI file.  Although pitch-shifting in SPECIMEN will
//    work, I recommend creating individual notes or small groups for
//    more realistic and interesting sounds, varying the pluck and
//    pickup locations slightly.

// REDUCE amplitudes for full instruments.  Suggested values are HIGH.

// Placed in public domain.  No warranties expressed or implied.  
//    By compiling this program, you agree to assume all risks associated
//    with this program and agree to indemnify author for all claims arising
//    from your use or misuse of this program, including derivatives, or 
//    arising from your use or misuse of information contained herein.

#include <iomanip>
#include <iostream>
#include <cmath>

int main(int argc, char * argv[])   // One big, bad main...
{

// Get inputs:

   int i_sample_rate = 44100;
   std::cerr << "Sample rate (integer, suggest 48000 or 44100): ";
   std::cin >> i_sample_rate;
   
   double freq = 440.0;
   std::cerr << "Frequency (Hz, double, suggest ~440 for A): ";
   std::cin >> freq;
   
   double freq_max = double(i_sample_rate)/2.0;
   int N = (int)(rint(freq_max / freq));   // Close enough...
   
   int T = 2;
   std::cerr << "Length (seconds, integer, suggest 2): ";
   std::cin >> T;
   T = (int)(rint(2 * T * freq_max));
   
   double x = 0.2;
   std::cerr << "Pickup position (double, 0.0 < x < 1.0, suggest 0.1 to 0.2): ";
   std::cin >> x;
   double xpp = 0.25;
   std::cerr << "Impulse position (double, 0.0 < xpp < 1.0, suggest 0.25): ";
   std::cin >> xpp;



   
   double Amplitude = 4.5;
   std::cerr << "Amplitude (double, suggest 4.5): ";
   std::cin >> Amplitude;
   Amplitude = Amplitude * freq;

   int resolution = 16;   // Accuracy is actually double-precision, normalized
   double normalization = pow(2.0, double(resolution));

   double pi = 3.141592653589793;
   double * coeff = new double[N+1];
   double * f = new double[T+1];

// Sawtooth parameters:

   double saw_freq = 40.0;
   const double saw_amplitude = 1.0;
   double sample_rate = double(i_sample_rate);
   int saw_N = int(rint(sample_rate / saw_freq));
   double * sawtooth = new double[T+1];
   double * convolved = new double[T+1];

// A_n/omega_n:

   for (int n=1; n<=N; n++)   {
      coeff[n] = (1.0/double(n)) * sin(double(n) * pi * xpp) * 
         sin(double(n) * pi * x);
   }

// f(t) with decay:

   double alpha = log(1e-3) / T;   // t60 for half-period (T)
   for (int t=1; t<=T; t++)   {
      f[t] = 0.0;
      for (int n=1; n<=N; n++)   {
         f[t] = f[t] + coeff[n] * 

    sin(double(n) * pi * (2 * freq)  *  double(t)/sample_rate);
      }
      // decay:
      f[t] = f[t] * exp(alpha * double(t));
   }

// Create sawtooth

   for (int n=1; n<saw_N; n++)   {
      sawtooth[n] = (saw_amplitude * double(n) / double(saw_N));
   }
   for (int n=saw_N; n<=T; n++)   {
      sawtooth[n] = 0.0;   // Ensure zero
   }

// Convolve:

   std::cout << "; Sample Rate " << i_sample_rate << std::endl;
   std::cout << std::setw(20) << std::setprecision(20);
   std::cout << "0.0   0.0" << std::endl;
   for (int m=1; m<=T; m++)   {
      convolved[m] = 0;
      for (int t=1; t<=m; t++)   {
         convolved[m] = convolved[m] + (f[t] * sawtooth[m-t+1]);
      }
      std::cout << (double(m) / (sample_rate)) << "   "
         << Amplitude * convolved[m] / normalization << std::endl;
   }

   delete[] coeff;
   delete[] f;



   delete[] sawtooth;
   delete[] convolved;
   
   return(0);
}
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