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Herein  is  presented  an  example  which  demonstra tes  the  Green's  function  method  described
in  [1] applied  to  a  simple,  two- dimensional,  pedagogical  example.   This  example  could  be
interpreted  as  the  striking  of  a  point  location  on  a circularly  shaped  membrane,  for  example
a drumhead,  and  picking  up  the  response  at  a  point  location  elsewhere  on  the  membrane.

We start  from  the  solution  for  the  three - dimensional  (3- D) wave  equation  derived  in  [1] and
[2] for  which  the  background  is  [3].  In  [2], the  solution  was:
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where  the  modal  frequencies  are:
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For  2- D, these  become:
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which  can  now  be  computed  for  all  n  and  m.  The  impulse  response  function  is  expressed
by:
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Now  we  need  to  determine  the  limits  for  n  and  m,  given  a maximum  frequency.   In  this  case
of  the  circular  membrane,  the  fundamental  frequency  is  given  by:

ω  0 1 = β0 1 a c
a 

where  β0 1 a ≈ 2 .40 5 is  the  first  zero  of  the  zeroth  order  Bessel  function,  c is  the  speed

of  sound  in  the  membrane,  and  a is  the  radius  of  the  circular  membrane.    Subsequent  zeros
for  the  zeroth  order  Bessel  function  are  approximately  β0 m a ≈ 2 .4 0 5 m π , so:

ω  0 m ≈ 2 .40 5 m π  ca 
Because  the  index  m  becomes  largest  for  the  zeroth  order  Bessel  function,  the  largest  value
of  m  (m max) can  be  obtained  from  the  approximate  expression  for  fmax:

ω m ax = 2 π fm ax ≈ 2 .40 5 mm ax π  ca 
As the  order  of  the  Bessel  function  increases,  fewer  and  fewer  frequencies  contribute  to  the
spectrum  until  none  do.   Because  the  zeros  are  interlaced  between  successive  orders  and
because  the  spacing  of  the  zeros  is  approximately  π (i.e. not  diminishing  significantly),  the
maximum  order  of  the  Bessel  functions  which  contribute  to  the  spectrum  (nmax)  is  not
greater  than  the  number  of  zeros  which  need  to  be  considered  from  the  zeroth  order  Bessel
function;  therefore,   nmax  ≤ m max .  Because  the  expression  for  m max  is  only  an  approximate
one,  we  include  the  possibility  of  a  relationship  of  equality  here.

Summarizing  the  recent  discussion:
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Returning  to  the  expression  for  the  fundamental  frequency:
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Once  a fundamental  frequency  is  chosen,  we  can  determine  the  value  of  a
c  :
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Now  we  can  use  this  expression  to  determine  n max  and  m max  even  more  directly:
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This  result  can  be  derived  more  simply,  but  doing  it  in  this  roundabout  way  allows
discussion  of  some  important  relations.   Now  again  thanks  to  the  interlacing  and  more  or
less  even  spacing  of  zeros,  n max  for  any  given  m  is:
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A similar  expression  holds  for   m max  for  any  given  n.   These  results  will  get  us  fairly  close  to
all  of  the  frequencies  that  we  need  to  consider.

In  order  to  obtain  more  uniform  results  for  choices  of  c, a,  r,  and  r'',  we  can  normalize  the
expression  for  A nm :
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Making  substitutions  so  that  we  can  express  dimensions  r  and  r''  as  fractions  of  the  radius,
and  allowing  c to  take  on  the  value  unity:

An m = 1

Jn + 1
 2 βn m a 

J n βn m r ' '
a  β0 1 a

2 π f0 1
 c o s n φ ' ' J n βn m  r

a  β0 1 a
2 π f0 1

 c o s n φ 

Approximately:
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the  approximate  normalized  expression  for  the  coefficients  
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The  first  order  of  business  in  calculating  the  coefficients  Anm  is  to  determine  the  value  of
βnm .  This  is  done  by  determining  the  argument  of  the  mth  zero  of  the  n th  order  Bessel
function,  from  which  βnm   can  be  calculated.   For  example:

β0 1 a ≈ 2 .4 0 5 ≈ β0 1

0 .3 82 8
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The  algorithm  to  calculate  these  coefficients  involves  determining  the  values  of  zeros  of
Bessel  functions,  calculating  βnm , then  using  these  values  of  βnm   in  the  arguments  of  Bessel
functions  to  determine  the  coefficients  Anm .  Once  this  is  done,  then  the  sin  transform  is
taken  to  determine  the  impulse  response  function  which  can  then  be  convolved  with  a
source  function  to  produce  the  solution.   This  is  the  same  strategy  that  was  used  in
previous  notes,  but  made  somewhat  more  complicated  by  use  of  Bessel  functions.
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