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A difficult  problem  in  audio  engineering  is  accurate  simulation  of  concert  halls  and  auditoriums  for  the
production  of  realistic  reverberation,  echo,  and  stereo  separation  for  audio  sources.   Finite  difference
and  finite  element  approaches  to  this  problem  require  large  resources.   Herein  is  developed  an  efficient
method  for  creating  accurate  stereo  images  for  simulating  concert  halls,  auditoriums  and  other  audio
environments.   The  formal  solution  to  the  three - dimensional  (3- D) wave  equation  is  rewritten  in  a  form
more  amenable  to  computa tion.

Following  [1], we  start  from  the  formal  solution  for  the  inhomogeneous  wave  equation,  with
homogeneous  boundary  and  initial  conditions:

ψ r , t =∫V∫t '= t0

t +
G r , t | r' ,t ' ρr' ,t '  dt' dV '

where   G (r,t  |  r',t') is  the  Green's  function  for  the  wave  operator  
1

c2  ∂2

∂ t2
− ∇ 2   and  for  the  given

boundary  and  initial  conditions;  ρ(r',t')  is  the  source  term,  and  t0  and  t+  are  the  start  and  current  times

for  the  signal  source,  respectively,  where  we  consider  signals  only  of  the  type:  ρ(r',0) =  ρt (r',0) =  0 (i.e.

quiescent  initial  conditions).   t+  =  t  +  ε   and  we  will  take  the  limit  of  t+  as  ε  →   0  at  the  end  of  the
calculation,  again  following  [1].

Assume  that  an  audio  source  ρ(r',t')  can  be  represented  as  a  product  of  spatial  and  temporal  functions:

ρr' , t ' = u r' st ' ∀ r' , t '

In  terms  of  the  normalized  eigenfunctions  Φn r for  the  Laplace  operator  − ∇ 2 , for  the  case  of  not

purely  Neumann  boundary  conditions  (no  term  for  n  =  0) and  homogeneous  Cauchy  initial  conditions,  
G ( r,t  |  r',t'  )  can  be  expressed  as:

G r , t | r' , t ' = c2∑
n

'  Φn
∗ r' Φn r

s in ω n τ 
ω n

θ  τ 

where  τ  =  t  -  t'  and  θ (t) is  the  Heaviside  step  function:

θ  t = {0 fo r t0
1 fo r t0} (weak  definition).

The  solution  is  then:

ψ r , t = c2∑
n

'  [ Φn r∫V
u r' Φn

∗ r'∫t '= t0

t +
s(t')

s in ω n τ 
ω n

θ  τ  dt' dV ']



The  key  to  efficiently  solving  a number  of  important  technological  problems  is  that  for  certain  cases  it
is  possible  to  integrate,  relatively  easily  and  prior  to  computa tion,  the  integral:

∫V
u r' Φn

∗ r' dV'

For  example,  consider  a  point  source  at  (x", y", z") in  a  rectangular  parallelepiped  with  sides  a,  b,  and  c
in  Cartesian  coordinates  and  u (r' ) =  u  =  constant  (with  n  →   nml):

ρr' , t ' = u r' st ' = u δ x '' -  x ' δ y '' -  y ' δ z '' -  z ' st '

Φnm l
∗ r' =  8

a b c
s in  n π x'

   a  s in  m π y'

   b  s in  l π z '

   c 
 
The  volume  integral  then  becomes:

∫V
u δ x '' -  x ' δ y '' -  y ' δ z '' -  z '  8

a b c
s in  n π x'

   a  s in  m π y'

   b  s in  l π z '

   c  dV'

=  u  8
ab c

s in  n π x''

   a  s in  m π y''

   b  s in  l π z ''

   c 
The  solution  now  becomes:

ψ r , t = c2 8 u
ab c ∑

n m l

'  [s in  n π x ''

   a  s in  m π y ''

   b  s in  l π z ''

   c s in  n π x

   a  s in  m π y

   b  s in  l π z

   c 
∫t '=−∞

t
s(t')

s in ω nm l τ 
ω nm l

d t ']
where  we  have  replaced  the  limits  of  the  time  integral  with  t0  →   - ∞   and  t+  →   t   because  s(t'  ) will

always  be  zero  prior  to  time  zero  anyway,  and  t  will always  be  greater  than  t'.   We have  also  dropped  
θ(τ )  because  t  will  always  be  greater  than  t'  .  

This  resulting  expression  above  can  be  used  for  computa tion.   For  a  fixed  reception  point  at  (x,y,z),  an
impulse  response  function  can  be  precomputed  for  the  impulse  signal  δ  (t'  ).  

Let

Anm l = c2 8 u
a b c

s in  n π x''

   a  s in  m π y ''

   b  s in  l π z ''

   c  s in  n π x

   a  s in  m π y

   b  s in  l π z

   c 
which  can  now  be  computed  for  all  n,  m,  l and  let

f  t =∫t '=−∞

t

∑
n m l

'  [An m l

s in ω n m l τ 
ω n m l

] δ t ' d t '



= ∑
n m l

'  Anm l

ω nm l

s in ω nm l t

Now  we  have  the  impulse  response  function  for  this  problem,  namely  the  discrete  sin  transform  of  the

quantity  
An m l

ω nm l

.

To  compute  the  resulting  sound  received  at  point  (x,y,z)  over  time  from  a source  at  (x", y", z"), we  can
compute  the  convolution:

f  t ∗ s t ≡∫−∞

∞
f t ' st  -  t ' d t ' =∫−∞

∞
f t  -  t ' st ' d t ' =∫−∞

∞
f  τ  st ' d t '

The  only  difference  between  the  these  integrals  and  the  solution  ψ(x,y,z;t)  is  the  upper  limit  of
integration.   Therefore,  let  us  consider  the  convolution  for  a  particular  time  t,  given  the  conditions  we
will  place  on  f(t) and  s(t'  ).   First,  we  have  already  specified  that  s(t'  ) is  zero  prior  to  time  zero.   This  is
also  true  for  f(t) for  all  cases  that  we  will consider.   That  is,  we  will  consider  only  "retarded"  solutions,
namely  only  those  solutions  wherein  effects  are  propagated  into  the  future.   Therefore,  not  only  is  the
integrand  always  zero  for  t'  <  0,  it  is  also  always  zero  for  t'  >  t.   Due  to  the  fact  that  c is  finite,  it  is  also
zero  for  t'  =  t  as  long  as  the  reception  point  and  the  location  of  the  source  are  separated  in  space.   In
effect,  the  upper  limit  of  the  integrand  may  be  then  taken  as  t  rather  than  infinity  at  any  particular  time
t.   Therefore,  for  the  cases  under  consideration,  at  any  particular  time  t:

ψ x,y,z;t = f  t ∗ s t

If this  is  done  for  two  locations  representing  the  left  and  right  ears  in  an  auditorium,  for  example,  a
stereo  image  representing  the  solution  to   the  wave  equation  for  the  two  reception  locations  driven  by  a
single  source  location  can  be  formed:

fL t∗ s t ∪ fR  t∗ s t = s t ∗ [ fL t ∪ fR  t]

For  multiple  sources,  a  "mix" can  be  specified  mathematically  by:

Mix = ∑
k

sk  t ∗ [ fk,L  t ∪ fk,R  t]

What  is  needed  is  a  set  of  coefficients  (impulse  response  functions)  fk,L t  and  fk,R t and
separately  recorded  channels  for  each  source  position.   The  functions  fk,L t and  fk,R t can  be  (and
have  been)  used  repeatedly  to  simulate  a  particular  listening  environment  to  produce  a very  high  quality
stereo  image  with  very  accurate  echo,  reverberation,  and  stereo  separation  in  accordance  with  the
solution  to  the  three - dimensional  wave  equation,  subject  to  the  boundary  and  initial  conditions  of  the
listening  environment,  for  a  wide  variety  of  audio  sources  (recordings)  in  that  same  environment.   As a
practical  note  for  a  certain  technological  problem,  this  approach  produces  "out  of  the  head"  stereo
audio  in  headphones,  simulating  binaural  recordings.   This  is  experienced  as  headphones  sounding  like
external  speakers  to  the  listener.

Extensions  to  the  discussion  above  include  solutions  for  line,  membrane,  and  volumetric  sources  as  well
as  for  cylindrical  and  spherical  environments.   Absorption  can  be  comprehended  either  by  using
complex - valued  eigenfunctions  or,  more  simply,  by  multiplying  the  impulse  response  function  by  an
exponentially  decaying  function  in  time.   The  approach  described  above  can  also  be  used  to  simulate
instruments;  indeed  a concert  hall  is  a  3- D instrument.   The  application  to  string  and  membrane



instruments  has  not  been  discussed  here  but  involves  1- D and  2- D solutions  which  result  from  trivial
changes  to  the  above  solutions.   
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