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Herein  is  presented  an  example  which  shows  the  Green's  function  method  described  in  [1] applied  to  a
simple,  one- dimensional,  pedagogical  example.   An interpretation  is  suggested  for  this  example  so  that
the  formalism  can  be  related  to  something  more  concrete.

We start  from  the  solution  for  the  three - dimensional  (3- D) wave  equation  derived  in  [1]:
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and  modify  it  for  the  case  of  1- D:
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For  a fixed  reception  point  at  (x), an  impulse  response  function  can  be  precomputed  for  a  source
impulse  signal  δ  (t'  ).  
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which  can  now  be  computed  for  all  n,  and  let
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Now  we  have  the  impulse  response  function  for  this  problem,  namely  the  discrete  sin  transform  of  the

quantity  
A n

ω n

.  In  any  real  computa tion,  the  number  of  frequencies  is  finite  and  f(t) is  periodic.



As described  in  [1], but  adapted  to  this  1- D example,  to  compute  the  resulting  sound  received  at  point

(x) over  time  from  a source  at  (x''), one  could  compute  the  convolution:
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However,  for  the  case  of  s(t'  ) =  δ  (t'  ) :

ψ x , t = f  t   (x is  now  a fixed  point).

That  is,  the  solution  for  the  case  of  an  impulse  at  position  (x'') on  a string,  at  another  location  (x) on  the
string,  is  the  impulse  response  function  itself,  as  is  expected.   We could  interpret  the  impulse  at
position  (x'') as  the  very  abrupt  strumming  of  a  guitar  string  or  the  very  abrupt  striking  of  a  keyboard
wire.   The  solution  at  position  (x) could  be  interpreted  as  the  response  at  the  location  of  the  pickup  of
that  guitar  string  or  keyboard  wire,  therefore  as  the  sound  of  the  instrument  under  those  conditions,
prior  to  amplification,  reverb,  or  other  processing.   If we  do  this  for  several  different  lengths  of  the
string  or  wire,  we  can  constuct  a  complete  instrument  such  as  a  guitar  or  keyboard.   An  accurate  model
of  a  guitar  string  or  keyboard  wire  would  require  a  slightly  more  complex  model;  nevertheless,
instruments  can  certainly  be  constructed  from  the  procedure  described  here.

We proceed  in  three  steps:  First  compute  the  values  of  
A n

ω n

; second  compute  the  discrete  sin

transform  of  
A n

ω n

.  Due  to  the  fact  we  don't  need  to  perform  the  convolution  for  this  case,  we  will

then  have  a waveform  that  represents  a  note  that  can  be  played  by  a 1- D instrument.   The  third  step  is
to  multiply  the  solution  ψ x , t , here  f  t , by  a function  that  decays  in  time.    Due  to  the

periodicity  of  f  t , the  characteristic  decay  time  needs  to  be  short  enough  so  that  f  t  decays  to
an  inaudible  level  before  any  periodic  effects  become  obvious.    To  accomplish  this,  we  can  use  the
function e− α t where  α is  chosen  to  cut  the  note  off  in  time  [3]. 

In  order  to  compute  
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 it  is  first  necessary  to  choose  a cutoff  frequency  so  that  n  is  finite.
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The  fundamental  frequency  is  given  by:
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For  a maximum  frequency  of  22,050  Hz,  n  ranges  from  1  to  50.
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Although  u  and  c are  normally  specified  by  the  problem,  for  the  purposes  of  this  example,  we  can

choose  u  so  that  regardless  of  what  c is,  we  can  normalize
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for  the  fundamental  frequency.   
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Plotting
A n

ω n

versus  ω n and  the  first  two  cycles  of  f  t where  no  filtering  has  been  applied:

In fully  3- D calculations,  the  frequency  spectrum  is  much  more  complex.   A typical  concert  hall  of  say
12,000  cubic  meters  can  have  something  on  the  order  of  three  billion  modes.   The  impulse  response
function  is  correspondingly  more  complex,  showing  the  spikes  of  the  direct  wave  and  other  waves  that
are  reflected  again  and  again  as  they  arrive  at  the  listening  point.    As  time  progresses,  the  spikes
become  more  and  more  dense,  representing  reverberation.   Here  in  this  1- D example,  we  see  merely  the
effects  of  the  pulses  as  they  pass  by  again  and  again  after  being  reflected  from  the  ends  of  the  1- D
medium.   Readers  familiar  with  the  models  of  plucked  strings  may  notice  that  this  solution  consists  of
long  pauses  at  zero  deflection,  hence  does  not  accurately  represent  a  plucked  string.    The  Green's
function  technique  can,  however,  be  used  to  model  plucked  strings;  this  author  plans  to  address  the
plucked  string  problem  in  a separate  note.  

One  may,  of  course,  use  this  1- D solution  as  an  impulse  response  function,  convolving  it  with  a
different  type  of  waveform  to  create  a  different  type  of  attack.   Truncated  sawtooth,  truncated  sin,  or
other  short  waveforms  can  be  used  to  create  different  types  of  sounds  with  this  same  fundamental
frequency.   One  may  also  use  recorded  sounds  for  this  convolution,  such  as  those  created  by  striking  a
drinking  glass  with  a  spoon,  hitting  a desktop  with  a  pen,  and  so  on.   This  author  has  used  recordings  of

0.00 50000.00 100000.00 150000.00

-0.1000
-0.0500
0.0000
0.0500
0.1000
0.1500
0.2000
0.2500
0.3000
0.3500
0.4000
0.4500
0.5000

Frequency Spectrum

1-D Example

Frequency (radians)

C
o
e
ff

ic
ie

n
t

0.00E+000 2.00E-003 4.00E-003 6.00E-003

-1.00E+000

-8.00E-001

-6.00E-001

-4.00E-001

-2.00E-001

-5.55E-017

2.00E-001

4.00E-001

6.00E-001

8.00E-001

1.00E+000

Solution

1-D Example

Time (seconds)

f(
t)

 (
n

o
rm

a
liz

e
d
)



the  pluckings  of  damped  electric  guitar  strings  for  this  purpose.   One  can  also  change  the  positions  of
the  impulse  and  the  "pickup"  to  create  different  types  of  sounds  at  this  same  fundamental  frequency.
Needless  to  say,  there  are  countless  variations  of  these  types  of  themes  that  can  be  used  to  create  a
wealth  of  sounds  with  the  technique  described  in  this  note.

After  an  instrument  is  constructed,  two  different  paths  could  be  followed  to  create  a  fully  3- D
instrument  and /or  performance:  1) Process  each  individual  solution  (note)  using  a convolution  with  a
stereo  impulse  response  function  for  a  3- D environment  as  described  in  [1], creating  an  accurate  stereo
image  of  each  note  somewhere  in  3- D space;  this  creates  a  stereo  instrument,  perhaps  an  extended
instrument  with  different  notes  in  different  locations;  or   2) Assemble  an  entire  "recording"  then  process
the  result  with  the  stereo  impulse  response  function,  creating  a completed  3- D rendering  of  a
performance  of  the  instrument.
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Appendix

A very  simple  C++  program  for  producing  the  data  in  the  plots  above  follows.   Output  is  to  standard
out.   The  sound  of  this  particular  impulse  response  function  resembles  a  banjo  at  440  Hz.

// One-dimensional pedagogical example for demonstrating application of 
//    Green's function formulation.  No windowing or filtering is performed.

// Maximum frequency for spectra is one-half of sample rate 
//    (e.g. 44.1 ksps -> 22.050 kHz)

// Dirac delta-function source at xpp = (x'' / length)
// Pickup at x = (x / length)

// WARNING: Be sure to REDIRECT OUTPUT: 
//    $ example > example.out

#include <iomanip>
#include <iostream>
#include <cmath>

int main(int argc, char * argv[])
{

// Inputs:

   double sample_rate = 44100.0;
   double freq = 440.0;
   double freq_max = sample_rate / 2.0;



   int N = (int)(rint(freq_max / freq));
   int T = (int)(rint(freq_max));
   
   double x = 0.2;
   double xpp = 0.25;
   
   double pi = 3.141592653589793;
   double * coeff = new double[N+1];
   double * f = new double[T+1];

// A_n/omega_n:

   for (int n=1; n<=N; n++)   {
      coeff[n] = (1.0/double(n)) * sin(double(n) * pi * xpp) * 
         sin(double(n) * pi * x);
      std::cout << "freq = " << freq * n * 2 * pi << "   " 
                << "coeff[" << n << "] = " << coeff[n] << std::endl;
   }

// f(t) with decay:

   double alpha = log(1e-3) / T;   // t60 for half-period (T)
   for (int t=1; t<=T; t++)   {
      f[t] = 0.0;
      for (int n=1; n<=N; n++)   {
         f[t] = f[t] + coeff[n] * 

    sin(double(n) * pi * (2 * freq)  *  double(t)/sample_rate);
      }
      // decay:
      f[t] = f[t] * exp(alpha * double(t));
      std::cout << "time = " << double(t)/sample_rate << "   "
                << "f[" << t << "] = " << f[t] << std::endl;
   }

   delete[] coeff;
   delete[] f;
   
   return(0);

}


