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From  a numerical  standpoint,  a  point  source  is  not  necessarily  a  good  type  of  source  to  use  for  solving
the  wave  equation  in  three  dimensions,  nor  is  a  point  source  necessarily  a  good  physical  source.   Herein
is  developed  a solution  for  simple  volumetric  sources  for  use  in  the  Green's  function  method  described
in  [1].

Consider  the  formal  solution  derived  in  [1] for  the  inhomogeneous  wave  equation,  with  homogeneous
boundary  and  initial  conditions:
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The  product  u(r')  s(t')  comprises  the  source  term  ρ(r', t') for  an  audio  signal; t0  and  t+  are  the  start  and

current  times  for  the  signal  source,  respectively,  where  we  consider  quiescent  initial  conditions;
t = t  ε  and  we  will  take  the  limit  of  t+  as  ε  →   0  at  the  end  of  the  calculation,  once  again

following  [2].  θ  t  is  the  Heaviside  step  function.

Once  again  the  key  to  efficiently  solving  a number  of  important  technological  problems  is  that  for
certain  cases  it  is  possible  to  integrate,  relatively  easily  and  prior  to  computa tion,  the  integral:
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For  example,  consider  a  volumetric  source  extending  from x 1 t o x 2 , y 1 t o y 2 , z1 t o z2 inside  a
parallelepiped  with  sides  a, b,  and  c in  Cartesian  coordinates  and  u(r') =  u  =  constant.   The  source  term

ρr' , t = u r' st ' becomes  (with  n  →  nml) :
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The  volume  integral  then  becomes:
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With  renormalization  for  the  small  volume,  the  solution  now  becomes:
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similar  to  the  expression  in  [1].  This  resulting  expression  above  can  be  used  for  computa tion.   For  a
fixed  reception  point  at  (x,y,z),  an  impulse  response  function  can  be  precomputed  for  the  impulse  signal

st ' = δ t ' .  Let
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which  can  now  be  computed  for  all  n,  m,  l.  Development  and  use  of  the  impulse  response  function
defined  by
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is  identical  from  this  point  on  to  that  in  [1].

The  expression  for  a  point  source  can  be  derived  from  the  expression  for Anm l above  by  noting  that
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which  is  the  form  of  the  comparable  terms  obtained  for  the  point  source  in  [1].
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